
Hydrograph

Prof. M.M.M. Najim

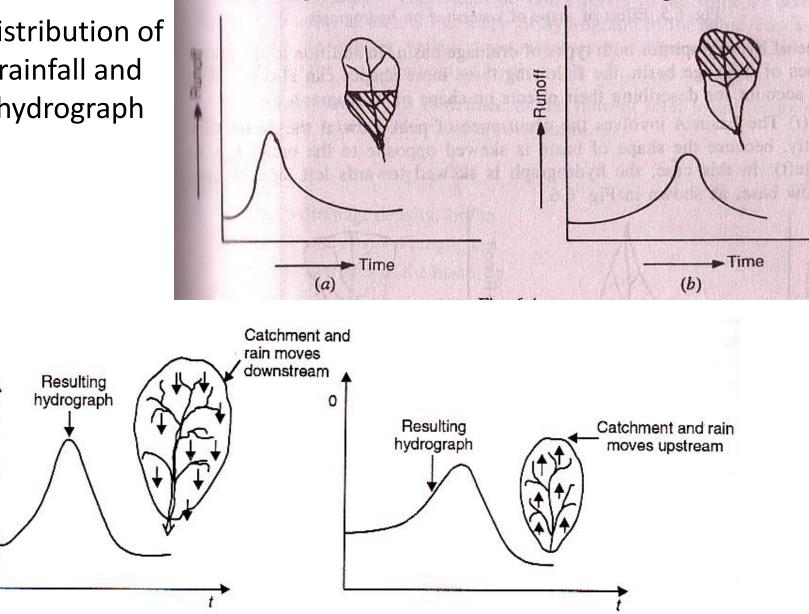
- Plot of discharge against time
- Has three regions: rising limb, crest segment and falling limb
- Nature of hydrograph depend on rainfall and watershed characters.
- Isolated storm results single peak hydrograph and complex storm yields multiple peak hydrograph.

Hydrograph

- Rising limb
 - Ascending portion representing rising discharge due to gradual increase in flow in stream
 - Slope depend on storm and basin characteristics
- Crest Segment
 - Inflection point on rising limb to falling limb
 - Indicate the peak flow
 - Controlled by storm and watershed characteristics
 - Multiple peaks due to occurrence of two or more storms of different intensities in a closer interval

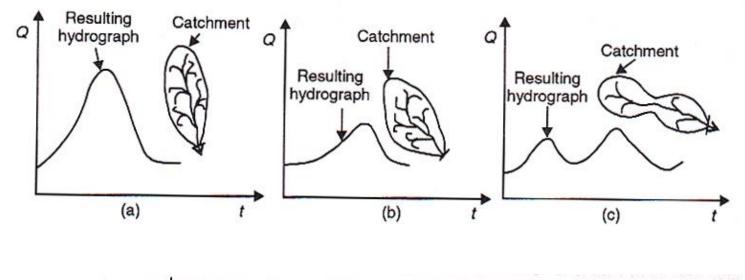
- Falling limb (recession limb)
 - From point of inflection at the end of crest segment to base flow.
 - Inflection point indicate the time at which rainfall stopped
 - Shape independent on storm characteristics but dependent on watershed characteristics

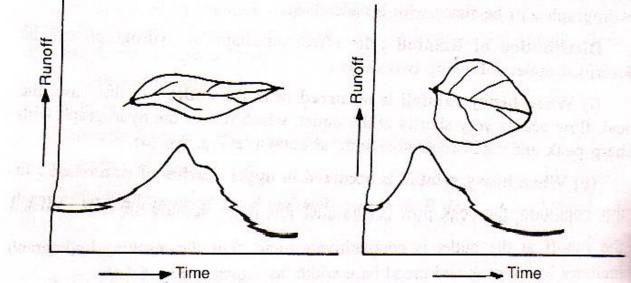
Factors affecting shape of hydrograph


- Climatic factors
 - Form of precipitation
 - Rainfall and snow fall rainfall tends to produce runoff rapidly generating hydrograph with high peak and narrow base
 - Rainfall Intensity
 - Affect volume of runoff , occurrence of peak flow, duration of surface flow
 - Higher the intensity quicker the peak flow and conical hydrograph
 - Duration of rainfall
 - Longer the duration more the volume
 - Longer duration, peak flow occur after longer time and hydrograph is flatter with broad base

Distribution of rainfall

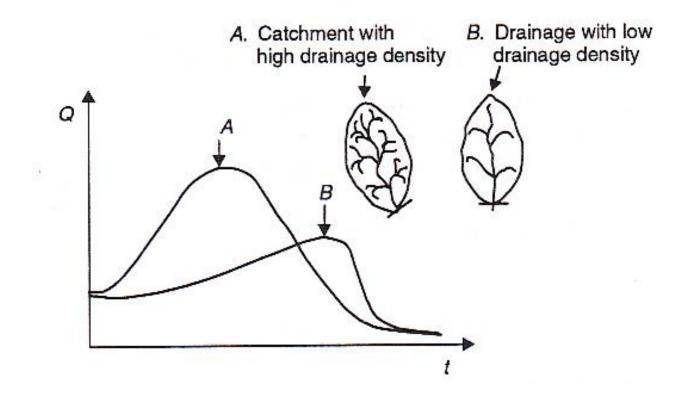
- When heavy rain occur near outlet
 - Peak flow occur quickly
- When heavy rain occur in upper areas
 - Peak flow occur after few hours
 - Lower peak and broad base (more time taken for flow to reach outlet)
- Direction of storm movement
 - Affects amount of peak flow and surface flow duration
 - Upward direction lower peak and broad base
 - Downward direction sharp peak and narrow base


Distribution of rainfall and hydrograph


0

Hydrograph affected by movement of rainfall

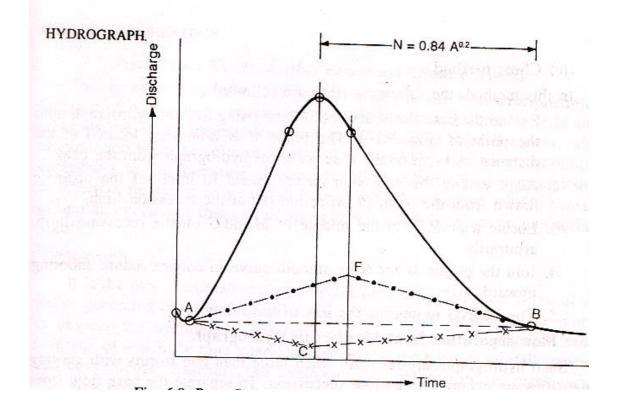
- Physiographic factors characteristics of watershed
 - Shape of basin
 - Affects the shape of hydrograph affecting time of concentration
 - Broad shaped peak flow occur soon because of less time of concentration, narrow hydrograph with high peak
 - Fan shaped peak flow occur at longer time interval because of longer time of concentration, broad base lower peak hydrograph



Effect on Hydrograph by Shape of catchment

– Size of basin

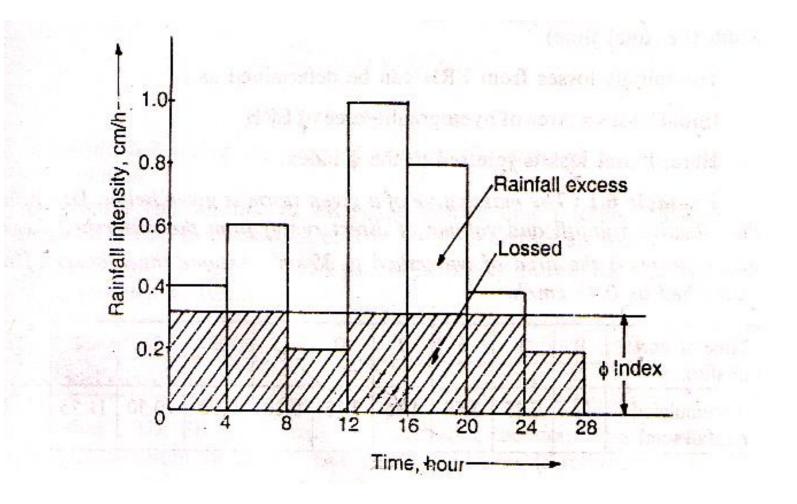
- Small basin flow dominated by overland flow that joins channel quickly, peak flow occur quickly
- Stream slope
 - More the stream slope higher the slope of recession limb, reduce base width of hydrograph
 - Small slope make recession limb flatter, base width wider
- Nature of valley
 - Greater valley slope higher the slope of recession limb


- Drainage density
 - Higher the drainage density, quicker the peak flow, recession limb is steeper with narrow hydrograph
 - Lesser the drainage density, slow moving rising limb and wide base width
- Landuse
 - Vegetation increases loss of water
 - Higher the vegetation density, lesser the peak flow
- Surface depression
 - Presence of ponds, rills etc. delay and modify flow pattern
 - Decreases peak flow and wide base width

Base flow separation

• Surface runoff hydrograph derived by separating base flow from hydrograph

- Straight line method
 - Join the starting and end points of surface runoff by straight line
 - Area under the straight line is base flow


- Fixed base method
 - Draw straight line from end point of surface runoff on rising limb to a point obtained by N = 0.83 A^{0.2} where A is area of watershed in km² and N is days
 - Fig 7.8 madan

- Variable slope method
 - Base flow before concentration with surface runoff is extended till it reaches the perpendicular line drawn from peak
 - Intersection point is extended to a point given by $N = 0.83 A^{0.2}$ on recession limb
 - Fig 7.9 Madan

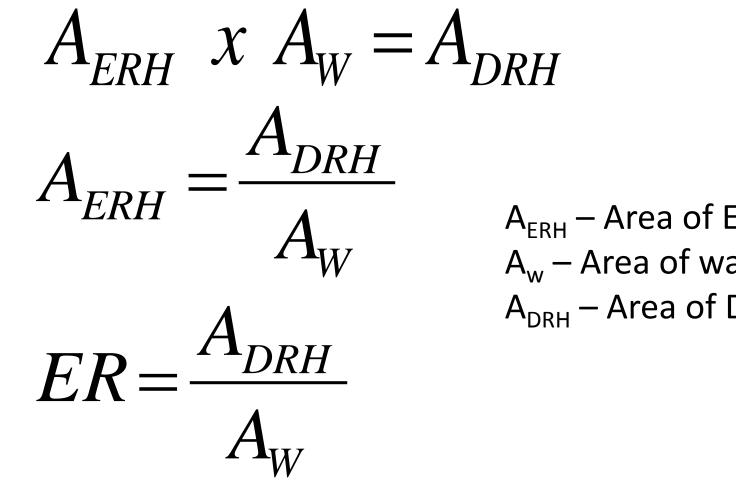
- Base flow recession curve method
 - Extend base flow recession curve backward till it intersects perpendicular line drawn from inflection point on recession limb
 - Join surface runoff concentration point on rising limb to intersection point
 - (Fig 6.9 Suresh)

Effective rainfall hyetograph

- Effective rainfall Part of precipitation that entirely contribute to the formation of direct runoff
- ERH shows effective rainfall and initial loss
- ERH provide information on
 - Effective rainfall depth and duration
 - Direct runoff volume
 - Amount of initial loss
- ERH can be used to determine effective rainfall

$$ER = \sum_{i=1}^{n} I_i \Delta t$$

ER – effective rainfall depth (cm or mm) $I_i = Rainfall intensity at time i (cm/h or mm/h)$ $\Delta t = time interval$

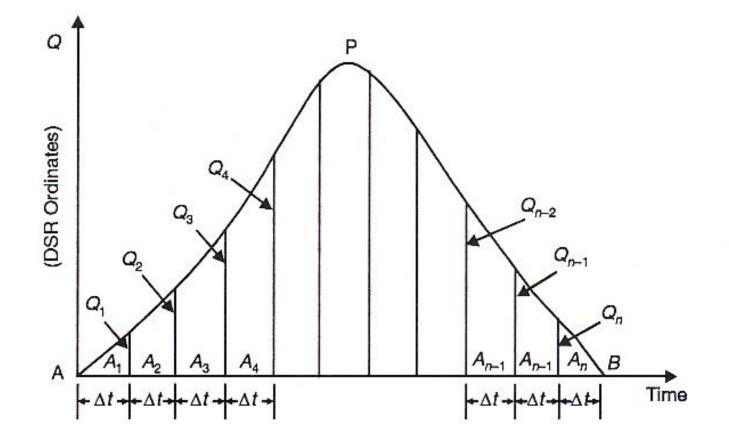

Volume of runoff = ER x A (Unit conversion needs to be done)

Initial Loss = Area of hyetograph – Area of ERH

Direct Runoff Hydrograph

- Plot of direct runoff and time
- Area of hydrograph gives the volume of direct runoff which is response to effective rainfall
- No base flow included to direct runoff hydrograph

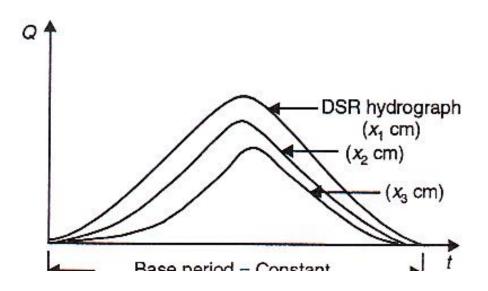
- Relationship between DRH and ERH
 - Both shows the same total quantity of direct runoff but in different units


A_{FRH} – Area of ERH A_{w} – Area of watershed A_{DRH} – Area of DRH

Computation of Direct Runoff from DRH

- Separate base flow and get the DRH
- For different time intervals calculate the area under the curve

Volume of Direct Runoff =
$$A_1 + A_2 + A_3 + \ldots + A_n$$


$$= \left(\frac{1}{2}Q_1 \Delta t\right) + \left[\left(\frac{Q_1 + Q_2}{2}\right)\Delta t\right] + \dots$$

Unit Hydrograph

- Hydrograph of surface runoff of a catchment resulting from unit depth (usually 1 cm) of rainfall excess (effective rainfall) occurring uniformly over the watershed and at uniform rate for a specified duration.
- A constant for the watershed
- Can be used to determine volume of direct runoff of any storm occurring in the catchment

- Assumptions in deriving Unit Hydrograph
 - Uniform intensity of rainfall within a specified duration
 - Effective rainfall is uniformly distributed in the watershed
 - Base of time duration of the direct runoff hydrograph is constant

- Direct runoff due to effective rainfall over the watershed is always same, not vary with time
- Relationship between direct runoff and effective rainfall is linear (Example: if ER of x cm generate y m³ of direct runoff, 3x will generate 3y m³)

Derivation of unit hydrograph

- Step 1: Separate base flow from any method
- Step 2: Determination of the volume of direct runoff (discussed earlier)
- Step 3: Determine the effective rainfall

Volume of Direct Runoff Area of Watershed

 Step 4: Determination of ordinates of unit hydrograph

$$OUHG = \frac{Ordinate \ of \ DRH}{ER}$$

Step 5: Plot the unit hydrograph

- Unit hydrograph can be used to get the hydrographs for other rainfall events.
 - Example : If 1 hour unit hydrograph is known, it can be used to compute hydrograph of a three hour event. (Example calculations 6.11 Suresh and 7.3 Madan)

- Uses of unit hydrograph
 - Development of flood hydrographs for extreme rainfall events that can be used to design hydraulic structures such as bridges, culverts etc.
 - Flood forecasting and warning
 - To extend flood flow records based on rainfall